Moving Average Filter Microcontroller

Wie andere erwähnt haben, sollten Sie eine IIR (Infinite Impulse Response) Filter anstelle des FIR (Finite Impulse Response) betrachten filtern Sie jetzt verwenden. Es gibt mehr dazu, aber auf den ersten Blick werden FIR-Filter als explizite Windungen und IIR-Filter mit Gleichungen implementiert. Das besondere IIR-Filter, das ich viel in Mikrocontrollern verwende, ist ein einpoliges Tiefpaßfilter. Dies ist das digitale Äquivalent eines einfachen R-C-Analogfilters. Für die meisten Anwendungen haben diese bessere Eigenschaften als der Kastenfilter, den Sie verwenden. Die meisten Verwendungen eines Box-Filter, die ich begegnet bin, sind ein Ergebnis von jemand nicht Aufmerksamkeit in der digitalen Signalverarbeitung Klasse, nicht als Ergebnis der Notwendigkeit ihrer besonderen Eigenschaften. Wenn Sie nur wollen, um hohe Frequenzen zu dämpfen, dass Sie wissen, Rauschen sind, ist ein einpoliges Tiefpassfilter besser. Der beste Weg, um ein digitales in einem Mikrocontroller zu implementieren, ist in der Regel: FILT lt - FILT FF (NEW - FILT) FILT ist ein Stück persistenten Zustand. Dies ist die einzige persistente Variable, die Sie benötigen, um diesen Filter zu berechnen. NEU ist der neue Wert, den der Filter mit dieser Iteration aktualisiert. FF ist die Filterfraktion. Die die Schwere des Filters einstellt. Betrachten Sie diesen Algorithmus und sehen Sie, dass für FF 0 der Filter unendlich schwer ist, da sich der Ausgang nie ändert. Für FF 1 ist das eigentlich gar kein Filter, da der Ausgang nur dem Eingang folgt. Nützliche Werte sind dazwischen. Bei kleinen Systemen wählen Sie FF auf 1/2 N, so dass die Multiplikation mit FF als Rechtsverschiebung um N Bits erreicht werden kann. Beispielsweise kann FF 1/16 betragen und das Multiplizieren mit FF daher eine Rechtsverschiebung von 4 Bits. Andernfalls benötigt dieses Filter nur eine Subtraktion und eine Addition, obwohl die Zahlen in der Regel größer als der Eingangswert sein müssen (mehr über die numerische Genauigkeit in einem separaten Abschnitt weiter unten). Ich normalerweise nehmen A / D-Messwerte deutlich schneller als sie benötigt werden und wenden Sie zwei dieser Filter kaskadiert. Dies ist das digitale Äquivalent von zwei R-C-Filtern in Serie und dämpft um 12 dB / Oktave über der Rolloff-Frequenz. Für A / D-Messungen ist es jedoch gewöhnlich relevanter, den Filter im Zeitbereich zu betrachten, indem er seine Sprungantwort betrachtet. Dies zeigt Ihnen, wie schnell Ihr System eine Änderung sehen wird, wenn die Sache, die Sie messen, ändert. Zur Erleichterung der Gestaltung dieser Filter (was nur bedeutet Kommissionierung FF und entscheiden, wie viele von ihnen zu kaskadieren), benutze ich mein Programm FILTBITS. Sie legen die Anzahl der Schaltbits für jede FF in der kaskadierten Filterreihe fest und berechnen die Schrittantwort und andere Werte. Eigentlich habe ich in der Regel laufen diese über mein Wrapper-Skript PLOTFILT. Dies führt FILTBITS, die eine CSV-Datei macht, dann die CSV-Datei. Beispielsweise ist hier das Ergebnis von PLOTFILT 4 4: Die beiden Parameter zu PLOTFILT bedeuten, dass es zwei Filter gibt, die von dem oben beschriebenen Typ kaskadiert sind. Die Werte von 4 geben die Anzahl der Schaltbits an, um die Multiplikation mit FF zu realisieren. Die beiden FF-Werte sind in diesem Fall 1/16. Die rote Spur ist die Einheit Schritt Antwort, und ist die Hauptsache zu betrachten. Dies bedeutet beispielsweise, dass sich der Ausgang des kombinierten Filters auf 90 des neuen Wertes in 60 Iterationen niederschlägt, falls sich der Eingang sofort ändert. Wenn Sie ca. 95 Einschwingzeit kümmern, dann müssen Sie ca. 73 Iterationen warten, und für 50 Einschwingzeit nur 26 Iterationen. Die grüne Kurve zeigt Ihnen den Ausgang einer einzelnen Amplitude. Dies gibt Ihnen eine Vorstellung von der zufälligen Rauschunterdrückung. Es sieht aus wie keine einzelne Probe wird mehr als eine 2,5 Änderung in der Ausgabe verursachen. Die blaue Spur soll ein subjektives Gefühl geben, was dieser Filter mit weißem Rauschen macht. Dies ist kein strenger Test, da es keine Garantie gibt, was genau der Inhalt der Zufallszahlen war, die als der weiße Rauscheneingang für diesen Durchlauf von PLOTFILT ausgewählt wurden. Seine nur, um Ihnen ein grobes Gefühl, wie viel es gequetscht werden und wie glatt es ist. PLOTFILT, vielleicht FILTBITS, und viele andere nützliche Dinge, vor allem für PIC-Firmware-Entwicklung ist verfügbar in der PIC Development Tools-Software-Release auf meiner Software-Downloads-Seite. Hinzugefügt über numerische Genauigkeit Ich sehe aus den Kommentaren und nun eine neue Antwort, dass es Interesse an der Diskussion der Anzahl der Bits benötigt, um diesen Filter zu implementieren. Beachten Sie, dass das Multiplizieren mit FF Log 2 (FF) neue Bits unterhalb des Binärpunkts erzeugt. Bei kleinen Systemen wird FF gewöhnlich mit 1/2 N gewählt, so daß diese Multiplikation tatsächlich durch eine Rechtsverschiebung von N Bits realisiert wird. FILT ist daher meist eine feste Ganzzahl. Beachten Sie, dass dies ändert keine der Mathematik aus der Prozessoren Sicht. Wenn Sie beispielsweise 10-Bit A / D-Messwerte und N 4 (FF 1/16) filtern, benötigen Sie 4 Fraktionsbits unter den 10-Bit-Integer-A / D-Messwerten. Einer der meisten Prozessoren, youd tun 16-Bit-Integer-Operationen aufgrund der 10-Bit-A / D-Lesungen. In diesem Fall können Sie immer noch genau die gleichen 16-Bit-Integer-Opertions, aber beginnen mit der A / D-Lesungen um 4 Bits verschoben verschoben. Der Prozessor kennt den Unterschied nicht und muss nicht. Das Durchführen der Mathematik auf ganzen 16-Bit-Ganzzahlen funktioniert, ob Sie sie als 12,4 feste oder wahre 16-Bit-Ganzzahlen (16,0 Fixpunkt) betrachten. Im Allgemeinen müssen Sie jedem Filterpole N Bits hinzufügen, wenn Sie aufgrund der numerischen Darstellung kein Rauschen hinzufügen möchten. Im obigen Beispiel müsste das zweite Filter von zwei 1044 18 Bits haben, um keine Informationen zu verlieren. In der Praxis auf einer 8-Bit-Maschine bedeutet, dass youd 24-Bit-Werte verwenden. Technisch nur den zweiten Pol von zwei würde den größeren Wert benötigen, aber für Firmware Einfachheit ich in der Regel die gleiche Darstellung, und damit der gleiche Code, für alle Pole eines Filters. Normalerweise schreibe ich eine Unterroutine oder Makro, um eine Filterpol-Operation durchzuführen, dann gelten, dass für jeden Pol. Ob eine Unterroutine oder ein Makro davon abhängt, ob Zyklen oder Programmspeicher in diesem Projekt wichtiger sind. So oder so, ich benutze einige Scratch-Zustand, um NEU in die Subroutine / Makro, die FILT Updates, sondern auch lädt, dass in den gleichen Kratzer NEU war in. Dies macht es einfach, mehrere Pole anzuwenden, da die aktualisierte FILT von einem Pol ist Die NEUE der nächsten. Wenn ein Unterprogramm, ist es sinnvoll, einen Zeiger auf FILT auf dem Weg in, die auf nur nach FILT auf dem Weg nach draußen aktualisiert wird. Auf diese Weise arbeitet das Unterprogramm automatisch auf aufeinanderfolgenden Filtern im Speicher, wenn es mehrmals aufgerufen wird. Mit einem Makro benötigen Sie nicht einen Zeiger, da Sie in der Adresse passieren, um auf jeder Iteration zu arbeiten. Code-Beispiele Hier ist ein Beispiel für ein Makro wie oben für eine PIC 18 beschrieben: Und hier ist ein ähnliches Makro für eine PIC 24 oder dsPIC 30 oder 33: Beide Beispiele sind als Makros mit meinem PIC-Assembler-Präprozessor implementiert. Die mehr fähig ist als eine der eingebauten Makroanlagen. Clabacchio: Ein weiteres Thema, das ich erwähnen sollte, ist die Firmware-Implementierung. Sie können eine einpolige Tiefpassfilter-Subroutine einmal schreiben und dann mehrmals anwenden. Tatsächlich schreibe ich normalerweise solch ein Unterprogramm, um einen Zeiger im Gedächtnis in den Filterzustand zu nehmen, dann ihn voranbringen den Zeiger, so daß er nacheinander leicht aufgerufen werden kann, um mehrpolige Filter zu verwirklichen. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Dank sehr viel für Ihre Antworten - alle von ihnen. Ich beschloss, dieses IIR-Filter zu verwenden, aber dieser Filter wird nicht als Standard-Tiefpaßfilter verwendet, da ich die Zählerwerte berechnen und sie vergleichen muss, um Änderungen in einem bestimmten Bereich zu erkennen. Da diese Werte von sehr unterschiedlichen Abmessungen abhängig von Hardware Ich wollte einen Durchschnitt nehmen, um in der Lage sein, auf diese Hardware spezifischen Änderungen automatisch reagieren. Wenn Sie mit der Beschränkung einer Macht von zwei Anzahl von Elementen zu durchschnittlich leben können (dh 2,4,8,16,32 etc), dann kann die Teilung einfach und effizient auf einem getan werden Low-Performance-Mikro ohne dedizierte Division, weil es als Bit-Shift durchgeführt werden kann. Jede Schicht rechts ist eine Macht von zwei zB: Der OP dachte, er hatte zwei Probleme, die Teilung in einem PIC16 und Speicher für seinen Ringpuffer. Diese Antwort zeigt, dass die Teilung nicht schwierig ist. Zwar adressiert es nicht das Gedächtnisproblem, aber das SE-System erlaubt Teilantworten, und Benutzer können etwas von jeder Antwort für selbst nehmen oder sogar redigieren und kombinieren andere39s Antworten. Da einige der anderen Antworten eine Divisionsoperation erfordern, sind sie ähnlich unvollständig, da sie nicht zeigen, wie dies auf einem PIC16 effizient erreicht werden kann. Ndash Martin Apr 20 12 at 13:01 Es gibt eine Antwort für einen echten gleitenden Durchschnitt Filter (auch bekannt als Boxcar-Filter) mit weniger Speicher Anforderungen, wenn Sie dont mind Downsampling. Es heißt ein kaskadiertes Integrator-Kamm-Filter (CIC). Die Idee ist, dass Sie einen Integrator, die Sie nehmen Differenzen über einen Zeitraum, und die wichtigsten Speicher-sparende Gerät ist, dass durch Downsampling, müssen Sie nicht jeden Wert des Integrators zu speichern. Es kann mit dem folgenden Pseudocode implementiert werden: Ihre effektive gleitende durchschnittliche Länge ist decimationFactorstatesize, aber Sie müssen nur um Stateize Proben zu halten. Offensichtlich können Sie bessere Leistung erzielen, wenn Ihr stateize und decimationFactor Potenzen von 2 sind, so dass die Divisions - und Restoperatoren durch Shifts und Masken ersetzt werden. Postscript: Ich stimme mit Olin, dass Sie immer sollten einfache IIR-Filter vor einem gleitenden durchschnittlichen Filter. Wenn Sie die Frequenz-Nullen eines Boxcar-Filters nicht benötigen, wird ein 1-poliger oder 2-poliger Tiefpassfilter wahrscheinlich gut funktionieren. Auf der anderen Seite, wenn Sie für die Zwecke der Dezimierung filtern (mit einer hohen Sample-Rate-Eingang und Mittelung es für die Verwendung durch einen Low-Rate-Prozess), dann kann ein CIC-Filter genau das, was Sie suchen. (Vor allem, wenn Sie stateize1 verwenden und den Ringbuffer insgesamt mit nur einem einzigen vorherigen Integrator-Wert zu vermeiden) Theres einige eingehende Analyse der Mathematik hinter der Verwendung der ersten Ordnung IIR-Filter, Olin Lathrop bereits beschrieben hat auf der Digital Signal Processing Stack-Austausch (Enthält viele schöne Bilder.) Die Gleichung für diese IIR-Filter ist: Dies kann mit nur Ganzzahlen und keine Division mit dem folgenden Code implementiert werden (möglicherweise benötigen einige Debugging, wie ich aus dem Speicher wurde.) Dieser Filter approximiert einen gleitenden Durchschnitt von Die letzten K Proben durch Einstellen des Wertes von alpha auf 1 / K. Führen Sie dies im vorherigen Code durch die Definition von BITS auf LOG2 (K), dh für K 16 gesetzt BITS auf 4, für K 4 gesetzt BITS auf 2, etc. (Ill Überprüfung der Code hier aufgelistet, sobald ich eine Änderung und Bearbeiten Sie diese Antwort, wenn nötig.) Antwort # 1 am: Juni 23, 2010, um 4:04 Uhr Heres ein einpoliges Tiefpassfilter (gleitender Durchschnitt, mit Cutoff-Frequenz CutoffFrequency). Sehr einfach, sehr schnell, funktioniert super, und fast kein Speicher Overhead. Hinweis: Alle Variablen haben einen Bereich über die Filterfunktion hinaus, mit Ausnahme des übergebenen newInput Hinweis: Dies ist ein einstufiger Filter. Mehrere Stufen können zusammen kaskadiert werden, um die Schärfe des Filters zu erhöhen. Wenn Sie mehr als eine Stufe verwenden, müssen Sie DecayFactor anpassen (was die Cutoff-Frequenz betrifft), um sie zu kompensieren. Und natürlich alles, was Sie brauchen, ist die beiden Zeilen überall platziert, brauchen sie nicht ihre eigene Funktion. Dieser Filter hat eine Rampenzeit, bevor der gleitende Durchschnitt diejenige des Eingangssignals darstellt. Wenn Sie diese Rampenzeit umgehen müssen, können Sie MovingAverage einfach auf den ersten Wert von newInput anstelle von 0 initialisieren und hoffen, dass der erste newInput kein Ausreißer ist. (CutoffFrequency / SampleRate) einen Bereich zwischen 0 und 0,5 aufweist. DecayFactor ist ein Wert zwischen 0 und 1, in der Regel in der Nähe von 1. Single-precision Schwimmer sind gut genug für die meisten Dinge, ich bevorzuge nur Doppel. Wenn Sie mit ganzen Zahlen bleiben müssen, können Sie DecayFactor und Amplitude Factor in Fractional Integers umwandeln, in denen der Zähler als Integer gespeichert wird und der Nenner eine Ganzzahl von 2 ist (so können Sie Bit-Shift nach rechts als die Nenner, anstatt sich während der Filterschleife teilen zu müssen). Zum Beispiel, wenn DecayFactor 0.99, und Sie Ganzzahlen verwenden möchten, können Sie DecayFactor 0.99 65536 64881. Und dann immer wenn Sie multiplizieren mit DecayFactor in Ihrer Filterschleife, nur verschieben Sie das Ergebnis 16. Für weitere Informationen über dieses, ein ausgezeichnetes Buch thats Online, Kapitel 19 auf rekursive Filter: dspguide / ch19.htm PS Für das Moving Average-Paradigma, einen anderen Ansatz für die Einstellung DecayFactor und AmplitudeFactor, die möglicherweise mehr relevant für Ihre Bedürfnisse, können Sie sagen, dass Sie wollen, dass die vorherigen, etwa 6 Artikeln gemittelt, es diskret tun, fügen Sie 6 Elemente und teilen durch 6, so Können Sie den AmplitudeFactor auf 1/6 und DecayFactor auf (1.0 - AmplitudeFactor) einstellen. Antwortete May 14 12 at 22:55 Jeder andere hat kommentiert gründlich über den Nutzen der IIR vs FIR, und auf Power-of-two-Division. Id nur, um einige Implementierungsdetails zu geben. Das unten genannte funktioniert gut auf kleinen Mikrocontrollern ohne FPU. Es gibt keine Multiplikation, und wenn Sie N eine Potenz von zwei halten, ist die gesamte Division ein-Zyklus-Bit-Verschiebung. Basic FIR-Ringpuffer: Halten Sie einen laufenden Puffer der letzten N-Werte und einen laufenden SUM aller Werte im Puffer. Jedes Mal, wenn eine neue Probe kommt, subtrahieren Sie den ältesten Wert im Puffer von SUM, ersetzen Sie ihn durch das neue Sample, fügen Sie das neue SUM zu SUM hinzu und geben Sie SUM / N aus. Modifizierter IIR-Ringpuffer: Halten Sie einen laufenden SUM der letzten N-Werte. Jedes Mal, wenn ein neues Sample kommt, SUM - SUM / N, fügen Sie das neue Sample hinzu und geben SUM / N aus. Antwort # 1 am: August 28, 2008, um 13:45 Uhr Wenn Sie 399m lesen Sie Recht, you39re beschreiben ein erster Ordnung IIR-Filter der Wert you39re subtrahieren isn39t der älteste Wert, der herausfällt, sondern ist stattdessen der Durchschnitt der vorherigen Werte. Erstklassige IIR-Filter können sicherlich nützlich sein, aber I39m nicht sicher, was du meinst, wenn Sie vorschlagen, dass der Ausgang ist der gleiche für alle periodischen Signale. Bei einer Abtastrate von 10 kHz liefert das Einspeisen einer 100 Hz-Rechteckwelle in ein 20-stufiges Kastenfilter ein Signal, das für 20 Abtastungen gleichmäßig ansteigt, für 30 sitzt, für 20 Abtastungen gleichmäßig sinkt und für 30 sitzt. Ein erster Ordnung IIR-Filter. Ndash Supercat Aug 28 13 am 15:31 wird eine Welle, die scharf anfängt zu steigen und allmählich Niveaus in der Nähe (aber nicht auf) das Eingabe-Maximum, dann scharf beginnt zu fallen und allmählich in der Nähe (aber nicht auf) der Eingabe Minimum. Sehr unterschiedliches Verhalten. Ndash Supercat Ein Problem ist, dass ein einfacher gleitender Durchschnitt kann oder auch nicht nützlich sein. Mit einem IIR-Filter können Sie einen schönen Filter mit relativ wenigen Calcs erhalten. Die FIR Sie beschreiben kann Ihnen nur ein Rechteck in der Zeit - ein sinc in freq - und Sie können nicht die Seitenkeulen zu verwalten. Es kann lohnt sich, in ein paar ganzzahlige Multiplikatoren zu werfen, um es eine schöne symmetrische abstimmbare FIR, wenn Sie die Zeitschaltuhren ersparen können. Ndash ScottSeidman: Keine Notwendigkeit für Multiplikatoren, wenn man einfach jede Stufe der FIR entweder den Durchschnitt der Eingabe auf diese Stufe und ihre vorherigen gespeicherten Wert, und dann speichern Sie die Eingabe (wenn man hat Der numerische Bereich, man könnte die Summe anstatt den Durchschnitt verwenden). Ob das besser ist als ein Box-Filter, hängt von der Anwendung ab (die Sprungantwort eines Boxfilters mit einer Gesamtverzögerung von 1ms wird zum Beispiel eine böse d2 / dt-Spitze aufweisen, wenn der Eingang geändert wird, und wieder 1ms später, wird aber haben Die minimal mögliche d / dt für einen Filter mit einer Gesamtverzögerung von 1ms). Ndash supercat Wie mikeselectricstuff sagte, wenn Sie wirklich brauchen, um Ihren Speicherbedarf zu reduzieren, und Sie dont dagegen Ihre Impulsantwort ist eine exponentielle (anstelle eines rechteckigen Puls), würde ich für einen exponentiellen gleitenden durchschnittlichen Filter gehen . Ich nutze sie ausgiebig. Mit dieser Art von Filter, brauchen Sie nicht jeden Puffer. Sie brauchen nicht zu speichern N Vergangenheit Proben. Nur einer. So werden Ihre Speicheranforderungen um einen Faktor von N reduziert. Auch brauchen Sie keine Division für das. Nur Multiplikationen. Wenn Sie Zugriff auf Gleitpunktarithmetik haben, verwenden Sie Fließkomma-Multiplikationen. Andernfalls können ganzzahlige Multiplikationen und Verschiebungen nach rechts erfolgen. Allerdings sind wir im Jahr 2012, und ich würde Ihnen empfehlen, Compiler (und MCUs), mit denen Sie mit Gleitkommazahlen arbeiten können. Abgesehen davon, dass mehr Speicher effizienter und schneller (Sie dont haben, um Elemente in jedem kreisförmigen Puffer zu aktualisieren), würde ich sagen, es ist auch natürlicher. Weil eine exponentielle Impulsantwort besser auf die Art und Weise reagiert, wie sich die Natur verhält, in den meisten Fällen. Ein Problem mit dem IIR-Filter fast berührt von Olin und Supercat, aber anscheinend von anderen ignoriert ist, dass die Rundung nach unten führt einige Ungenauigkeiten (und möglicherweise Bias / Trunkierung). Unter der Annahme, dass N eine Potenz von zwei ist und nur ganzzahlige Arithmetik verwendet wird, beseitigt das Shift-Recht systematisch die LSBs des neuen Samples. Das bedeutet, dass, wie lange die Serie jemals sein könnte, wird der Durchschnitt nie berücksichtigen. Nehmen wir z. B. eine langsam abnehmende Reihe (8,8,8,8,7,7,7,7,6,6) an und nehmen an, daß der Durchschnitt tatsächlich 8 ist. Die Faust 7 Probe bringt den Durchschnitt auf 7, unabhängig von der Filterstärke. Nur für eine Probe. Gleiche Geschichte für 6, usw. Jetzt denke an das Gegenteil. Die serie geht auf. Der Durchschnitt bleibt auf 7 für immer, bis die Probe groß genug ist, um es zu ändern. Natürlich können Sie für die Bias korrigieren, indem Sie 1 / 2N / 2, aber das nicht wirklich lösen, die Präzision Problem. In diesem Fall wird die abnehmende Reihe für immer bei 8 bleiben, bis die Probe 8-1 / 2 (N / 2) ist. Für N4 zum Beispiel, wird jede Probe über Null halten den Durchschnitt unverändert. Ich glaube, eine Lösung für das implizieren würde, um einen Akkumulator der verlorenen LSBs halten. Aber ich habe es nicht weit genug, um Code bereit, und Im nicht sicher, es würde nicht schaden, die IIR Macht in einigen anderen Fällen der Serie (zum Beispiel, ob 7,9,7,9 würde durchschnittlich 8 dann). Olin, Ihre zweistufige Kaskade würde auch eine Erklärung brauchen. Halten Sie zwei durchschnittliche Werte mit dem Ergebnis der ersten in die zweite in jeder Iteration eingezogen halten. Was ist der Vorteil dieses Gleitmittelungsfilters Es gibt viele verschiedene Arten von Filtern können Sie und die Boxcar (oder gleitenden Durchschnitt, wie Sie es genannt) schreiben oder rechteckigen Filter ist nur nur eine von em. Hier ist ein Vergleich einer Vielzahl von Filtern, und die Art der Wirkung, die sie auf Ihre Daten haben können, als eine Funktion der Frequenz. Um einen einfachen gleitenden durchschnittlichen Filter zu machen, müssen Sie nur die Daten addieren, dann dividieren durch die Anzahl der Datenelemente. Wenn Sie alle Elemente addieren, jedes Mal wenn Sie den Durchschnitt berechnen, kostet es Sie n Zusätze plus eine Abteilung. Auf der anderen Seite, wenn Sie zu verfolgen, wo die ältesten Daten befindet, dann, wenn die Daten fortschreitet, fügen Sie lediglich die neuen Daten, subtrahieren die ältesten Daten, und wieder die Teilung zu tun. Diese Methode kostet nur eine einzige Addition, eine einzelne Subtraktion und eine Division. Viel schneller. Ich schreibe nicht den Code für Sie. Ich hoffe, dies hilft, though. Geschrieben von JaguarPaw Fr 16. Dezember 2016, 02.33 while (1) 0 i--) / Senden stop / I2CStop () die r Variable die Zahl zurückgeführt von der DS1307 erfolgreich speichern würde, wie es ursprünglich war nun arbeiten sie einfrieren Wo ich sagte vor oder zurück nullhere ist der Setup-Code. die Subroutinen sind die gleichen wie auf dieser Haupt website. void (void) // Pin-Konfiguration ANSELB 0 TRISBbits. TRISB4 1 TRISBbits. TRISB6 1 //SSP1STATbits. SMP 0 SSP1STAT 0x80 // SSPEN WCOL nocollision CKP Idle aktiviert: Niedrig, aktiv: Hohe SSPM FOSC / 4SSPxADDI2C SSPOV nooverflow SSP1CON1 0x28 // ACKTIM ackseq SBCDE deaktiviert BOEN deaktiviert SCIE deaktiviert PCIE deaktiviert Dhen deaktiviert SDAHT 100ns Ahen deaktiviert SSP1CON3 0x00 // Baudrate Generator Wert: SSPADD 79 SSP1ADD 0x4f Geschrieben von ajaybhargav Di 13. Dezember 2016, 08: 55 AM definieren LCDEN 0X80LCD Freigabe Pin ist auf Bit 7 von w. Verfasst von ajaybhargav Tue Dez 13 2016, 08:52 am können Sie Ihre Code-Snippet Sie rufen wi. Hallo Centurio, ich habe nicht genug Zeit, um zu aktualisieren pl. Verfasst von rodrider Mo Dez 12 2016, 09:59 PM bitte was bedeutet das im Code hierfür bedeuten. Geschrieben von JaguarPaw Mo Dez 12 2016, 09.43 Uhr Ich habe die I2C-Bibliothek verwendet und folgte dem Tutor. Verfasst von Centurio Mo Nov 28 2016, 08:46 Hallo, vor langer Zeit. Ive eine kurze Frage an. Verfasst von kirangowle Mi Nov 16 2016, 03:56 Hallo Forum Mitglieder, Nach einer langen Zeit bin ich zurück zu. Geschrieben von PratikSuthar Do 13 Okt 2016, 12:39 martin die HEX-Datei im Projekt zur Verfügung gestellt ist nein. Hallo Phil, Möchten Sie diese zu bestehenden Proje. FIR Filter-Grundlagen hinzufügen 1.1 Was sind "FIR-Filterquot" FIR-Filter sind einer von zwei primären Arten von digitalen Filtern, die in der digitalen Signalverarbeitung ( DSP), der andere Typ ist IIR. 1.2 Was bedeutet "FIRquot" bedeutet "FIRquot" bedeutet "FInite Impulse Responsequot". Wenn Sie einen Impuls, das heißt, ein einziges quadratisches Beispiel, gefolgt von vielen quot0quot Proben, setzen, werden Nullen herauskommen, nachdem das quot1quot Beispiel seinen Weg durch die Verzögerungslinie des Filters gemacht hat. 1.3 Warum ist die Impulsantwort quotfinitequot Im allgemeinen Fall ist die Impulsantwort endlich, da es keine Rückmeldung in der FIR gibt. Ein Mangel an Feedback garantiert, dass die Impulsantwort endlich ist. Daher ist der Begriff "endliche Impulsantwort" annähernd gleichbedeutend mit einer Quotno-Rückmeldung. Wenn jedoch die Rückkopplung verwendet wird, ist die Impulsantwort endlich, der Filter ist jedoch immer noch ein FIR. Ein Beispiel ist das gleitende Mittelfilter, bei dem jedes Mal, wenn eine neue Probe eintritt, subtrahiert (rückgekoppelt) wird. Dieser Filter hat eine endliche Impulsantwort, obwohl er Rückkopplung verwendet: nach N Abtastungen eines Impulses die Ausgabe Wird immer Null sein. 1.4 Wie kann ich aussprechen firquot Einige Leute sagen, die Buchstaben F-I-R anderen Menschen auszusprechen, als wäre es eine Art von Baum. Wir bevorzugen den Baum. (Der Unterschied besteht darin, ob Sie über einen F-I-R-Filter oder einen FIR-Filter sprechen.) 1.5 Was ist die Alternative zu FIR-Filtern DSP-Filter können auch Infinite Impulse Responsequot (IIR) sein. (Siehe dspGurus IIR FAQ.) IIR-Filter verwenden Feedback, so dass bei der Eingabe eines Impulses die Ausgabe theoretisch unendlich klingelt. 1.6 Wie FIR-Filter mit IIR-Filtern vergleichen Jedes hat Vor - und Nachteile. Insgesamt aber überwiegen die Vorteile von FIR-Filtern die Nachteile, so dass sie viel mehr als IIRs verwendet werden. 1.6.1 Was sind die Vorteile von FIR-Filtern (im Vergleich zu IIR-Filtern) Im Vergleich zu IIR-Filtern bieten FIR-Filter folgende Vorteile: Sie lassen sich leicht als quasi-lineare Phasenquotten konzipieren (und sind in der Regel). Einfach ausgedrückt, verzögern lineare Phasenfilter das Eingangssignal, aber donrsquot verzerrt seine Phase. Sie sind einfach zu implementieren. Bei den meisten DSP-Mikroprozessoren kann die FIR-Berechnung durch Schleifen einer einzigen Anweisung durchgeführt werden. Sie eignen sich für Mehrpreisanwendungen. Mit Multi-Rate bedeuten wir entweder einen Dekrementquot (Reduzierung der Abtastrate), eine Interpolation (Erhöhung der Abtastrate) oder beides. Ob Dezimierung oder Interpolation, die Verwendung von FIR-Filtern erlaubt es, einige der Berechnungen wegzulassen, wodurch eine wichtige Recheneffizienz geschaffen wird. Im Gegensatz dazu, wenn IIR-Filter verwendet werden, muss jeder Ausgang individuell berechnet werden, auch wenn dieser Ausgang verworfen wird (so dass die Rückkopplung wird in den Filter integriert werden). Sie haben gewünschte numerische Eigenschaften. In der Praxis müssen alle DSP-Filter mit Hilfe einer Finite-Precision-Arithmetik, dh einer begrenzten Anzahl von Bits, implementiert werden. Die Verwendung von Finite-Precision-Arithmetik in IIR-Filtern kann aufgrund des Feedbacks erhebliche Probleme verursachen, aber FIR-Filter ohne Rückkopplung können gewöhnlich mit weniger Bits implementiert werden, und der Konstrukteur hat weniger praktische Probleme, die mit der nicht idealen Arithmetik zusammenhängen. Sie können mit Hilfe von fractional arithmetic implementiert werden. Im Gegensatz zu IIR-Filtern ist es immer möglich, ein FIR-Filter unter Verwendung von Koeffizienten mit einer Grße von weniger als 1,0 einzusetzen. (Die Gesamtverstärkung des FIR-Filters kann bei Bedarf an seinem Ausgang eingestellt werden.) Dies ist ein wichtiger Aspekt bei der Verwendung von Festpunkt-DSPs, da sie die Implementierung viel einfacher macht. 1.6.2 Was sind die Nachteile von FIR-Filtern (im Vergleich zu IIR-Filtern) Im Vergleich zu IIR-Filtern haben FIR-Filter manchmal den Nachteil, dass sie mehr Speicher und / oder Berechnung benötigen, um eine gegebene Filtercharakteristik zu erreichen. Auch sind bestimmte Reaktionen mit FIR-Filtern nicht praktikabel. 1.7 Welche Begriffe werden bei der Beschreibung von FIR-Filtern verwendet? Impulsantwort - Der Impulsantwortfaktor eines FIR-Filters ist eigentlich nur der Satz von FIR-Koeffizienten. (Wenn Sie ein quotimplusequot in einen FIR-Filter setzen, der aus einem quotierten Quot-Sample besteht, gefolgt von vielen quot0quot-Samples, ist das Ausgangssignal des Filters die Menge der Koeffizienten, wenn sich die 1 Sample nacheinander um jeden Koeffizienten bewegt, um die Ausgabe zu bilden. Tippen - Ein FIR quottapquot ist einfach ein Koeffizient / Verzögerungspaar. Die Anzahl der FIR-Anzapfungen (oft als "Anfasser" bezeichnet) ist ein Hinweis auf 1) die zur Implementierung des Filters erforderliche Speicherkapazität, 2) die Anzahl der erforderlichen Berechnungen und 3) die Menge des Filterfilters, Multiply-Accumulate (MAC) - In einem FIR-Kontext ist ein MACquot der Vorgang des Multiplizierens eines Koeffizienten mit dem entsprechenden verzögerten Datenabtastwert und dem Akkumulieren des Ergebnisses. FIRs erfordern normalerweise einen MAC pro Hahn. Die meisten DSP-Mikroprozessoren implementieren die MAC-Operation in einem einzigen Befehlszyklus. Transition Band - Das Frequenzband zwischen Passband - und Stopband-Kanten. Je schmaler das Übergangsband ist, desto mehr Taps werden benötigt, um den Filter zu implementieren. (Ein quotsmallquot-Übergangsband führt zu einem quotsharpquot-Filter.) Delay Line - Der Satz von Speicherelementen, die die quotZ-1quot-Verzögerungselemente der FIR-Berechnung implementieren. Zirkulärer Puffer - Ein spezieller Puffer, der zirkulär ist, weil eine Inkrementierung am Ende bewirkt, dass er sich zum Anfang wickelt, oder weil das Dekrementieren von Anfang an bewirkt, dass es bis zum Ende wickelt. Zirkuläre Puffer werden oft von DSP-Mikroprozessoren bereitgestellt, um den Quotientenquot der Proben durch die FIR-Verzögerungsleitung zu implementieren, ohne die Daten im Speicher wörtlich bewegen zu müssen. Wenn ein neues Sample zum Puffer hinzugefügt wird, ersetzt es automatisch die älteste.


Comments

Popular posts from this blog

Forex Mirror Trading

Forex Trading Brokers In Toronto

Forex Co Il